3.177 \(\int \frac{x^2 (A+B x^2)}{\sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=336 \[ -\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\sqrt{a} B \sqrt{c}-3 A c+2 b B\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{6 c^{7/4} \sqrt{a+b x^2+c x^4}}-\frac{x \sqrt{a+b x^2+c x^4} (2 b B-3 A c)}{3 c^{3/2} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} (2 b B-3 A c) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{3 c^{7/4} \sqrt{a+b x^2+c x^4}}+\frac{B x \sqrt{a+b x^2+c x^4}}{3 c} \]

[Out]

(B*x*Sqrt[a + b*x^2 + c*x^4])/(3*c) - ((2*b*B - 3*A*c)*x*Sqrt[a + b*x^2 + c*x^4])/(3*c^(3/2)*(Sqrt[a] + Sqrt[c
]*x^2)) + (a^(1/4)*(2*b*B - 3*A*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]
*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(3*c^(7/4)*Sqrt[a + b*x^2 + c*x^4]) -
(a^(1/4)*(2*b*B + Sqrt[a]*B*Sqrt[c] - 3*A*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[
c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(6*c^(7/4)*Sqrt[a + b*x^2 +
c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.149233, antiderivative size = 336, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {1279, 1197, 1103, 1195} \[ -\frac{x \sqrt{a+b x^2+c x^4} (2 b B-3 A c)}{3 c^{3/2} \left (\sqrt{a}+\sqrt{c} x^2\right )}-\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\sqrt{a} B \sqrt{c}-3 A c+2 b B\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{6 c^{7/4} \sqrt{a+b x^2+c x^4}}+\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} (2 b B-3 A c) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{3 c^{7/4} \sqrt{a+b x^2+c x^4}}+\frac{B x \sqrt{a+b x^2+c x^4}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(A + B*x^2))/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(B*x*Sqrt[a + b*x^2 + c*x^4])/(3*c) - ((2*b*B - 3*A*c)*x*Sqrt[a + b*x^2 + c*x^4])/(3*c^(3/2)*(Sqrt[a] + Sqrt[c
]*x^2)) + (a^(1/4)*(2*b*B - 3*A*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]
*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(3*c^(7/4)*Sqrt[a + b*x^2 + c*x^4]) -
(a^(1/4)*(2*b*B + Sqrt[a]*B*Sqrt[c] - 3*A*c)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[
c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(6*c^(7/4)*Sqrt[a + b*x^2 +
c*x^4])

Rule 1279

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e*f
*(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1))/(c*(m + 4*p + 3)), x] - Dist[f^2/(c*(m + 4*p + 3)), Int[(f*x)^(m -
 2)*(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[
{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (Inte
gerQ[p] || IntegerQ[m])

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{x^2 \left (A+B x^2\right )}{\sqrt{a+b x^2+c x^4}} \, dx &=\frac{B x \sqrt{a+b x^2+c x^4}}{3 c}-\frac{\int \frac{a B+(2 b B-3 A c) x^2}{\sqrt{a+b x^2+c x^4}} \, dx}{3 c}\\ &=\frac{B x \sqrt{a+b x^2+c x^4}}{3 c}+\frac{\left (\sqrt{a} (2 b B-3 A c)\right ) \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+b x^2+c x^4}} \, dx}{3 c^{3/2}}-\frac{\left (\sqrt{a} \left (2 b B+\sqrt{a} B \sqrt{c}-3 A c\right )\right ) \int \frac{1}{\sqrt{a+b x^2+c x^4}} \, dx}{3 c^{3/2}}\\ &=\frac{B x \sqrt{a+b x^2+c x^4}}{3 c}-\frac{(2 b B-3 A c) x \sqrt{a+b x^2+c x^4}}{3 c^{3/2} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{\sqrt [4]{a} (2 b B-3 A c) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{3 c^{7/4} \sqrt{a+b x^2+c x^4}}-\frac{\sqrt [4]{a} \left (2 b B+\sqrt{a} B \sqrt{c}-3 A c\right ) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{6 c^{7/4} \sqrt{a+b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 1.38167, size = 479, normalized size = 1.43 \[ \frac{i \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} \sqrt{\frac{-2 \sqrt{b^2-4 a c}+2 b+4 c x^2}{b-\sqrt{b^2-4 a c}}} \left (-3 A c \sqrt{b^2-4 a c}+2 b B \sqrt{b^2-4 a c}+2 a B c+3 A b c-2 b^2 B\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{2} x \sqrt{\frac{c}{\sqrt{b^2-4 a c}+b}}\right ),\frac{\sqrt{b^2-4 a c}+b}{b-\sqrt{b^2-4 a c}}\right )-i \left (\sqrt{b^2-4 a c}-b\right ) \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} \sqrt{\frac{-2 \sqrt{b^2-4 a c}+2 b+4 c x^2}{b-\sqrt{b^2-4 a c}}} (2 b B-3 A c) E\left (i \sinh ^{-1}\left (\sqrt{2} \sqrt{\frac{c}{b+\sqrt{b^2-4 a c}}} x\right )|\frac{b+\sqrt{b^2-4 a c}}{b-\sqrt{b^2-4 a c}}\right )+4 B c x \sqrt{\frac{c}{\sqrt{b^2-4 a c}+b}} \left (a+b x^2+c x^4\right )}{12 c^2 \sqrt{\frac{c}{\sqrt{b^2-4 a c}+b}} \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(A + B*x^2))/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(4*B*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*(a + b*x^2 + c*x^4) - I*(2*b*B - 3*A*c)*(-b + Sqrt[b^2 - 4*a*c])*Sqrt
[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sq
rt[b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b -
 Sqrt[b^2 - 4*a*c])] + I*(-2*b^2*B + 3*A*b*c + 2*a*B*c + 2*b*B*Sqrt[b^2 - 4*a*c] - 3*A*c*Sqrt[b^2 - 4*a*c])*Sq
rt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b -
Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b
 - Sqrt[b^2 - 4*a*c])])/(12*c^2*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 607, normalized size = 1.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

B*(1/3/c*x*(c*x^4+b*x^2+a)^(1/2)-1/12/c*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2
))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-
4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))+1/3*b/c*a*2^(1/2)/((-b+(-4*a*c+b^2)^
(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^
2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-
4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c
+b^2)^(1/2))/a/c)^(1/2))))-1/2*A*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^
2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*
x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(
1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} x^{2}}{\sqrt{c x^{4} + b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*x^2/sqrt(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B x^{4} + A x^{2}}{\sqrt{c x^{4} + b x^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((B*x^4 + A*x^2)/sqrt(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \left (A + B x^{2}\right )}{\sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(B*x**2+A)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(x**2*(A + B*x**2)/sqrt(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} x^{2}}{\sqrt{c x^{4} + b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(B*x^2+A)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*x^2/sqrt(c*x^4 + b*x^2 + a), x)